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What kind of physics
do we study
in NPDγ    ?
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n               p                         d γ

two-body interaction

The Process
We study is the hadronic weak
interaction between
spin-polarized neutrons and
protons in the

reaction.       Eγ = 2.2 MeV
  n + p → d + γ
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the correlation between neutron spin and photon momentum

is odd under parity transformation
(        changes sign,        does not)

ns kγ⋅

     n                        p                                                         d γ

( ) ( )r rΨ → Ψ −

flip n-spin
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The Process
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( ) ( )r rΨ → Ψ −

flip n-spin

Weak-Interaction violate parity
If the up/down ? rates differ, parity is violated !

NPDG measures Aγ , the parity-violating asymmetry in the distribution of emitted γ’s.

strength of strong / weak interaction ~ 10-8

We study is the hadronic weak
interaction between
spin-polarized neutrons and
protons in the

reaction.       Eγ = 2.2 MeV
  n + p → d + γ



Simple Level Diagram of n-p System

Low-energy
continuum states

Bound states

M1 (PC)

3S1, I = 0

3S1,I = 0
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Simple Level Diagram of n-p System

Low-energy
continuum states

Bound states

M1 (PC)

3S1, I = 0

3S1,I = 0

1S0,I = 1

3S1 VW
3P1 ;∆I =1

3S1 VW
1P1 ;∆I = 0

1S0 VW
3P0 ;∆I = 2

  n + p → d + γ

•  Weak interaction mixes in P waves to the singlet and triplet S-waves in
initial and final states.
•  Parity conserving transition is M1.
•  Parity violation arises from mixing in P states and interference of the
E1 transitions.
•  Aγ is coming from 3S1 - 3P1 mixing and interference of E1-M1transitions
- ∆I  = 1 channel.

Mixing amplitudes:

is primarily sensitive to the ? I = 1 component of the weak interaction

π exchange

ρ exchange

3P1, I =1 1P1, I = 0

3P1, I =1 1P1, I = 0

3P0 ,I = 1

E1 E1

E1

E1
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N

N

PV

PC

π, ρ,ω

The Hadronic Weak Interaction

W and Z boson exchange
Nucleon interaction takes place on a
scale of 1 fm -- short range repulsion.
Due to the heavy exchange particles,
the range of W± and Z0 is 1/100 fm,
weak interaction probes quark-quark
interaction and correlations at small
distances.

At low energies  N-N weak interaction
modeled as meson exchange with one
strong PC vertex, one weak PV vertex.

classical

The weak PV couplings contribute in
various mixtures and a variety of
observables:

DDH - Model
Desplanque, Donohue, Holstein 1980

1 0 1 1' 2 0 1, , , , , ,f h h h h h hπ ρ ρ ρ ρ ω ω
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W and Z boson exchange
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N

PV

PC

π, ρ,ω

The Hadronic Weak Interaction

W and Z boson exchange

PANIC’05 BL

new model independent  EFT
approach by Ramsey-Musolf, Holstein,
van Kolck, Zhu and Maekawa
describes processes in terms of low-
energy constants/amplitudes
describing short-range force and pion
interaction (EFT: 5 low-energy PV
amplitudes  without explicit pions , 8 with
explicit pions) - calculate these from
first principles

Nucleon interaction takes place on a
scale of 1 fm -- short range repulsion.
Due to the heavy exchange particles,
the range of W± and Z0 is 1/100 fm,
weak interaction probes quark-quark
interaction and correlations at small
distances.

At low energies  N-N weak interaction
modeled as meson exchange with one
strong PC vertex, one weak PV vertex.



                         is a clean measurement of a
single parameter   fp:
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•  Negligible (less than 1%)
    contributions from
    ρ, ω, 2π exchanges

•  No uncertainty from nuclear
    wave functions

Constraints on Weak N-N Coupling
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EFT



  Previous determinations of  fp =                            disagree:
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anapole moment
photon polarization
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contradictory results
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DDH
Meson Exchange
Currents
 reasonable
theoretical range
0 - 1.14
best value 0.45

contradictory results



In reality experiments
determine a linear
combination of couplings
(In npdg other couplings
than fπ are negligible)

Constraints on Weak N-N Coupling
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Aγ = 2 ·10-5

Typical Measurement

Cl

n

d 1 (1 cos( ))
d 4 s kA

γ

ω
γπ ⋅= + Θ

Ω
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direction of n spin          and
photon momentum

ns
kγ

NPDG
GOAL = 10-8   !!!



How do we perform the
measurement of

the np→dγ  process ?
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20 Hz pulsed 
neutron beam

~ 6 x 108 cold
neutrons per 20 Hz
pulse out of the end
of the 21 m
supermirror guide

FP12 views a cold
hydrogen moderator in
backscattering
geometry

Liquid H2 coupled moderator:
a) liquid H2      b) H2O partially coupled
c) Be-reflector  d) Pb-reflector

NPDG cave

L
A
N
S
C
E

Neutron Source 
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Frame
Definition
Chopper

•   Pulsed beam: neutron time-of-flight
determines neutron velocity, energy

•   PV asymmetry is independent of energy

•   Very slow neutrons can overlap with
faster neutrons from later pulse

•   Chopper rotor coated with Gd2O3
absorbs slow neutrons up to 30 meV,
opens window for faster ones

•  up to 1200 RPM

•  settings: opens with n-pulse onset
4 ms later open , closes after 30 ms, 4ms
later totally closed

22m
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Experiment
Setup

Cave
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beam



Experiment  Setup
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Experiment  Setup
Guide Field

whole setup contained in 10 Gauss 
guide field to prevent Stern-Gerlach 
steering of neutrons

requires gradient ≈ 1 mGauss / cm
or smaller B
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ln(1/T) is a linear function of tof

3He neutron spin filter:
• In a 3He cell Rb atoms are

polarized by laser light.
Through spin exchange, 3He gas
is nuclear polarized.

• neutron capture cross section of
the 3He singlet state is much
larger than the triplet state.
(104 difference)

• Therefore, neutrons with spin
antiparallel with 3He spins are
absorbed and neutrons with spin
parallel with 3He spins are
transmitted → neutron spin filter

Neutrons are polarized by
Optically-Polarized 3He Spin Filter

12 cm
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3Heneutron



Spin Flipper

• In a DC magnetic field Bo, a resonant RF
magnetic field (B1cosωt) is applied for a
time τ=1/γB1, to precess the neutron spin,
around B1, by π.   20 Hz pulse pattern

• B1(t) ∝1/TOF, for reversing neutron spin in
wide energy range (~0.5-50 meV).

• RF spin flipper is the main control of
systematic errors. Spin flip sequence is
“  ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓  ” .

• Grad. ∂Bz/ ∂ z  < 1 mgauss/cm ⇒ no Stern-
Gerlach steering force (µ.∇B)   no false
asymmetry.

• High maximum spin reversal efficiency for
0 < En < 100 meV, ~ 95% for En = 4 meV
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Flipper coil



Beam Monitors

3 beam monitors used to measure
i) neutron flux out from the guide    
ii) beam polarization
iii) ortho/para ratio in LH2 target

n+ 3He      p + t + 765 keV    ionizes gas mixture
[3He +4He(~.5 atm) +N2(~.5 atm)]

Ratio of 3He to 4He  (~5% to 100%),
σabs(3He ) >> σabs (4He )
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20-liter Liquid Para-Hydrogen Target

• To maintain neutron spin in scattering a
para- hydrogen target is required.

• The 30 cm in diameter and 30 cm long
target captures 60% of incident neutrons.

• At 17 K only 0.05% of LH2 is in ortho
state → 1% of incident neutrons will be
depolarized.

• Target cryostat materials selected so that
false asymmetries < 10-10.

ortho

para

capture

Neutron mean free paths at 4 meV in
- ortho-hydrogen is λ = 2 cm,
- para-hydrogen is λ = 20 cm
- for a n-p capture is λ = 50 cm.

useful range 1-15 meV
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20-liter Liquid Para-Hydrogen Target

- presently being tested
- has to be LANL safety commissioned
- ready end of 2005

30 cm

30
 c

m
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Target Vessel



spin flipper

CsI detector array

beam
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• 5x107 γ’s/pulse are expected into the
detector array   Detection in
current mode. --- Electrical noise kept
significantly smaller than counting
statistics / use sum + difference
amplifier

• The 3π detector array employs 48 CsI
(Tl) scintillator crystals
(15x15x15cm3), each coupled with a
3-inch vacuum photo-diode.

• Gain provided by low noise solid-
state preamplifiers. Gains are
magnetic field insensitive.

• Interaction length of a 2.23 MeV γ
ray in CsI ~ 5.5 cm. ~95% of  γ’s stop
in 15 cm.



CsI detector array
• 5x107 γ’s/pulse are expected into the

detector array   Detection in
current mode. --- Electrical noise kept
significantly smaller than counting
statistics / use sum + difference
amplifier

• The 3π detector array employs 48 CsI
(Tl) scintillator crystals
(15x15x15cm3), each coupled with a
3-inch vacuum photo-diode.

• Gain provided by low noise solid-
state preamplifiers. Gains are
magnetic field insensitive.

• Interaction length of a 2.23 MeV γ
ray in CsI ~ 5.5 cm. ~95% of  γ’s stop
in 15 cm.
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First Results

Co

In

Cl

calibration asymmetry
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direction of n spin          and
photon momentum

ns
kγ

• engineering materials check
• study of hadronic weak interaction in
  atoms with A ~ 50 (experiment is running)



First Results

In

Cl

calibration asymmetry

thanks to PhD students 
M.Dabagian & R.Mahurin

• engineering materials check
• study of hadronic weak interaction in
  atoms with A ~ 50 (experiment is running)
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Summary

• npdγ is ready end of this year for production data

• 2006 @ LANSCE   Aγ < 10-7

• move to SNS   
start data taking in 2008

   ->    Aγ <  1 · 10-8 at FNPB
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Thanks
for your attention !
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• Physics - correlated with neutron spin:
– activated materials - emit γs in β-decay
– Stern-Gerlach steering
– L-R asymmetry

• n - p elastic scattering
• n - p parity allowed asymmetry
• Mott-Schwinger scattering

• Instrumental sources
– electronics, stray magnetic fields, gain

stability
• Monitoring:

– Null test at En > 15 meV and at end of each
pulse.

Systematic Issues
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